If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=0
a = 1; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*1}=\frac{-2}{2} =-1 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*1}=\frac{0}{2} =0 $
| y=3(5^3)-10(5^2)-27(5)+10 | | 3(5m-4);m=-2 | | 2(3y-6)=4(y-5)+4 | | 5(x+2)=16-4(x+6) | | 6.2g+9=3.2g+21 | | 9=-15-5x | | 7x2=1 | | 2(3x-5)=4x-4 | | 3^(27x)+3^(x)=90 | | 7-5(y+2)=82 | | -2-49=-18v+44 | | 22=6(x+1)+4 | | 2(3x–7)=15x-9 | | 3(2c-4)=2c+8 | | 240=5(x+6)+25x | | x-1.3=-5.3 | | 8/x+1=x-1 | | 225=x(x+16) | | 25.84/30=x/100 | | 5(x-5)+25x=275 | | 10a+25=0 | | 3(2x+6)=6x | | 79=4x | | X+.07x=9500 | | x*1.035=4365017 | | 35=15-2x | | X^3+7x^2-6x-42=0 | | 5(x+6)-25x=240 | | 8(8+19)=x+4(3x+x+4) | | X+4(4x+4)=216 | | 2/3s-5/3s+1/2=-3/2 | | 2u²-9u+5=0 |